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City Guarding with Cameras of Bounded Field of View
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Abstract

We study two problems related to the city guarding and
the art gallery problems.

1. Given a city with k rectangular buildings, we prove
that 3k+1 cameras of 180◦ field of view are always
sufficient to guard the free space (the ground, walls,
roofs, and the sky). This answers a conjecture of
Daescu and Malik (CCCG, 2020).

2. Given k orthogonally convex polygons of total m
vertices in the plane, we prove that m

2 +k+1 cam-
eras of 180◦ field of view are always sufficient to
guard the free space (avoiding all the polygons).
This answers another conjecture of Daescu and Ma-
lik (Theoretical Computer Science, 2021).

Both upper bounds are tight in the sense that there are
input instances that require these many cameras. Our
proofs are constructive and suggest simple polynomial-
time algorithms for placing these many cameras.

1 Introduction

Fixed cameras are common devices that are being used
to monitor streets and buildings in cities. These cam-
eras usually monitor the ground and walls. Due to an
increasing use of drones and other flying objects, mon-
itoring the entire space (including the ground, walls,
roofs, and sky) is becoming crucial. The problem of
monitoring the entire space with minimum number of
cameras is usually referred to as the city guarding prob-
lem in computational geometry.
To the best of our knowledge the problems related to

guarding cities were first introduced by Bao et. al [2].
They introduced three different versions of the problem
where the goal is to guard (1) only the roofs of the
buildings, (2) the walls of the buildings and the ground,
and (3) the roofs, walls, and the ground. This latter
version is called “city guarding”.

In the city guarding problem we should take into ac-
count many factors such as the city’s layout, buildings’
orientation, and the cameras’ field of view. These fac-
tors usually led to different variations of the city guard-
ing problem.
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In this paper we study a version of the city guard-
ing problem that is introduced by Daescu and Ma-
lik [5]: Given k pairwise disjoint rectangular-base build-
ings, find a minimum number of cameras that guard the
city such that (i) each camera is a half-sphere with 180◦

field of view and infinite range, and (ii) each camera is
placed at a corner on top of the roof of a building in a
direction orthogonal to a wall.

According to Bao et al. [2] the city guarding problem
can be interpreted as a 2.5-dimensional version of the
well-studied art gallery problem. In the standard art
gallery problem we are given a simple polygon and the
goal is to place the minimum number of guards/cameras
to cover the entire polygon [8]. In other words, each
point of the polygon is visible by some guard. A point
p is said to be visible by a guard g if the line segment pg
lies inside the polygon. The art gallery problem and its
variations have been well-studied in recent years [12].
The variations usually enforce constraints on the shape
of the polygon, the existence of holes, the shape of holes,
the orientation of holes, locations of guards, guards’ field
and range of vision, to name a few. The city guarding
problem has the same flavor as the art gallery problem
with rectangular holes.

The city guarding also has the same flavor as a free-
space illuminating problem, studied by Blanco et al. [3],
in which the input consists of pairwise disjoint rectan-
gles in the plane and the goal is to place minimum num-
ber of lights at the corners of the rectangles to light up
the free space (the entire plane minus the the rectan-
gles).

2 Related Works and Results

In this section we focus only on results that are directly
related to the city guarding problem. There is a rich
literature for the art gallery problem for which we refer
the reader to [1, 3, 4, 7, 8, 9, 10, 11].

Bao et al. [2] studied the city guarding problem for k
rectangular-base buildings that are orthogonal (to the
xy-axis) and for cameras with 360◦ field of view. Re-
call that the cameras should be placed at top corners

of buildings. They showed that ⌊ 2(k−1)
3 ⌋+ 1 guards are

always sufficient and sometimes necessary to guard the
roofs. They also showed that k+⌊k

4 ⌋+1 guards are suf-
ficient to guard walls and ground. For the city guarding
(roofs, walls, the ground) they showed the sufficiency of
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Figure 1: (a) A city with rectangular buildings. (b) Orthogonally convex polygons.

k + ⌊k
2 ⌋+ 1 guards.

Recently, Daescu and Malik [5] studied the city guard-
ing problem for cameras with 180◦ field of view. They
proved that 2k+ ⌊k

4 ⌋+4 cameras are sufficient to guard
axis-aligned buildings. For arbitrary oriented buildings
they gave an example that requires 3k + 1 cameras for
any k ≥ 1. They conjectured that 3k + 1 cameras
are also sufficient. See Figure 1(a) for an example of
arbitrary-oriented rectangular buildings.

In a companion paper, Daescu and Malik [6] studied
another problem of the same flavor; guard free space
formed by orthogonally convex polygons. Given k pair-
wise disjoint orthogonally convex polygons with total
m vertices, the goal is to place cameras of 180◦ field of
view to guard the free space and the boundaries of the
polygons (cameras should be placed at corners of poly-
gons and orthogonal to its sides). An orthogonal poly-
gon is a polygon whose edges are orthogonal to each
other (not necessarily orthogonal to the xy-axis). An
orthogonal polygon is orthogonally convex if its inter-
section with any line orthogonal to its edges is either
empty or a single line segment; see for example poly-
gon C in Figure 1(b). Daescu and Malik show that for
axis-aligned polygons m

2 + ⌊k
4 ⌋ + 4 cameras are always

sufficient and for arbitrary-oriented polygons m
2 + k+1

cameras are sometimes necessary for any k ≥ 1 and
any valid m. They conjectured that m

2 + k+ 1 cameras
are also sufficient. See Figure 1(b) for an example of
arbitrary-oriented orthogonally convex polygons.

2.1 Our Contributions

We prove both conjectures of Daescu and Malik [5, 6]
that 3k + 1 cameras are sufficient to guard arbitrary-
oriented rectangular buildings, and m

2 + k + 1 cameras
are sufficient to guard arbitrary-oriented orthogonally
convex polygons. Our proofs are constructive and sug-
gest polynomial-time algorithms for finding these many

guards. The two proofs share some similarities in the
sense that both partition the free space into convex re-
gions and then provide an upper bound for the number
of these regions. We explain our proof for rectangular
buildings first as it is easier to explain. Then we give a
short description of how to generalize it for monotone
orthogonal polygons.

3 City Guarding

In this section we present our algorithm for the city
guarding problem. The following lemma, borrowed from
[5], implies that to guard the entire space it suffices to
guard roofs, walls, and the ground. Therefore in the
algorithm we focus on guarding roofs, walls, and the
ground.

Lemma 1 (Daescu and Malik [5]) If in a city the
roofs, walls, and the ground are guarded by a set of cam-
eras, then every point in the aerial space of the city is
visible by a camera.

Recall that the city consists of k arbitrary-oriented
buildings with rectangular basis, and that the cameras
have 180◦ field of view and should be placed at corners
on top of the roofs orthogonal to a wall. (We clarify
that a camera could be placed in such a way that it sees
the roof of the building, as in Figure 3.)

Daescu and Malik [5] gave an example which requires
3k + 1 cameras. This example is given in Figure 2.
Each building Bi+1 is higher than the building Bi. They
conjectured that the bound 3k + 1 is tight.

We show how to guard the city with at most 3k + 1
cameras, and thus proving the conjecture of [5]. We
project the buildings onto the plane to obtain rectan-
gles (in dimension 2). Then we guard the the rectangles
(representing roofs), their sides (representing walls),
and the space between them (representing the ground).
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Figure 2: A city with k = 4 buildings that needs 3k+1
guards; borrowed from [5].

By Lemma 1, this would give a guarding of the city in
dimension 3.
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Figure 3: A city with k = 5 buildings. The sides are
extended in order h1, h2, h3, h4, h5. The pink area is a
bad region. The green marks are corner guards and the
blue mark is an edge guard.

We start by projecting the buildings vertically into
the plane; this is a typical first step for problems of this
type, see e.g. [2, 5]. Thus we obtain k pairwise disjoint
rectangles in the plane. We may assume without loss
of generality that the k rectangles lie in a bigger rect-
angle called P . One can think of P as a polygon and
of rectangles as holes. Thus after this projection, each
building becomes a hole in P and each wall becomes a
side of some hole. One can think of this as an instance
of the art gallery problem consisting of a polygon with
rectangular holes.

Our next step is to guard P by cameras with 180◦

field of view. This would give (after lifting the rectangles
back to their original height) a guarding of walls and the
ground. As we will see later, our placement of cameras
would guard the roofs as well.

Let h1, h2, . . . , hk denote the rectangular holes or-
dered arbitrarily. For each hi in this order, we extend
the sides of hi in counterclockwise direction and stop
as soon as reaching another hole, an extension of a pre-
vious side, or the boundary of P ; see Figure 3. Each
extension is essentially a directed line segment whose
initial point is a hole corner. These extensions partition
P into some regions that we denoted R1, R2, . . . ; notice
that we exclude the holes.

Lemma 2 Each region Ri is convex.

Proof. The region Ri is an intersection of a set of quad-
rants (which are convex). Each quadrant is defined by
extensions of two adjacent sides of the same hole. Since
the intersection of any set of convex objects is known to
be convex, the region Ri is convex. □

Lemma 3 The number of regions R1, R2, . . . is 3k+1.

Proof. We define a plane graph G = (V,E) as follows.
The vertex set V consists of the corners of the holes and
the intersection points of the extended sides. We refer to
them by corner and intersection vertices, respectively.
The edges in E are formed by the sides of the holes, the
extensions of sides, and the boundary of P .

We claim that each vertex of G has degree 3, and
thus G is 3-regular. Each corner vertex is incident to
two sides of a hole and an extension, thus has degree 3.
Each intersection vertex is incident to an extension and
two segments obtained from the intersected segment,
and thus has degree 3. Degenerate cases are rather easy
to handle, for example if two extensions hit a segment
at the same point p, then we treat p as two vertices of
degree 3 instead of one vertex of degree 4.

The number of corner vertices is 4k. Each extension
(of a side of a hole) defines an intersection vertex. Thus
the number of intersection vertices is the same as the
total number of sides of holes, which is 4k. Therefore
|V | = 8k. Since the sum of the vertex degrees in any
graph is twice the number of edges and G is 3-regular,
we have the following equality,

2|E| = 3|V |.

Therefore,

|E| = 3|V |
2

=
3 · 8k
2

= 12k.

Let F be the set of faces of G, which includes the
holes, the outerface (exterior of P ), and the regions
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R1, R2, . . . . Using Euler’s formula for connected planar
graphs, we have

|F | = |E| − |V |+ 2 = 12k − 8k + 2 = 4k + 2.

Excluding the outerface and the k holes, the number
of regions R1, R2, . . . is 3k + 1. □

Lemma 4 Each region Ri contains a corner of a hole
on its boundary.

Proof. Recall the extensions of h1, . . . , hk in this or-
der. Observe that the boundary of Ri contains (parts
of) some extensions. Consider the last extension that
was added to the boundary of Ri, or say, closes the re-
gion Ri. The entire directed line segment that defines
this extension is part of the boundary of Ri. The ini-
tial point of this directed line segment is a corner of a
hole. □

By Lemma 4 each region Ri has a hole corner on its
boundary. If the boundary of Ri has a 90

◦ angle at some
corner, then we call it a good region, and otherwise a bad
region; see Figure 3.

Camera Placement: Take any region Ri. If Ri is
a bad region then let c be an arbitrary corner on the
boundary of Ri. We place a camera at c facing towards
the interior of Ri and perpendicular to the boundary
segment of Ri containing c. We call this camera an
edge guard—it lies on an edge of Ri. If Ri is a good
region then let c be the lowest (i.e. with the smallest
y-coordinate) corner at which the boundary of Ri has
angle 90◦. We place a camera at c facing towards the
interior of Ri and perpendicular to the clockwise bound-
ary segment at c (which is the extension at c). We call
this camera a corner guard—it lies on a corner of Ri.

Since Ri is convex (by Lemma 2) the camera that is
placed on the boundary of Ri covers the entire interior
of Ri. Since we place exactly one camera for each region
Ri, (i) all regions R1, R2, . . . are guarded, and (ii) the
number of cameras is equal to the number of regions Ri

which is 3k+1 by Lemma 3. Therefore we have guarded
the polygon P by 3k + 1 guards. As discussed earlier,
this gives a guarding of walls and the ground in the city.

We claim that our camera placement, also guards the
roofs. Observe that for each hole h it holds that one
of its corners is the lowest corner of angle 90◦ on the
boundary of some good region Ri. Notice that such
a lowest corner of Ri is uniquely defined by h. The
camera that is placed at that corner (perpendicular to
the extended side), guards the roof of h. The following
theorem summarizes our result of this section.

Theorem 5 Given k arbitrary-oriented rectangular-
base buildings, we can guard the entire space (the
ground, walls, roofs, and the sky) with at most 3k + 1

cameras of 180◦ field of view that are placed at top cor-
ners of buildings orthogonal to a wall. The bound 3k+1
is the best achievable.

4 Guarding Orthogonally Convex Polygons

In this section we present our algorithm for guarding
the free space formed by orthogonally convex polygons.
Recall that the scene consists of k arbitrary-oriented or-
thogonally convex polygons, and that the cameras have
180◦ field of view and should be placed on corners of
polygons orthogonal to a side. We may assume without
loss of generality that the k polygons lie in a rectangu-
lar polygon called P . The free space, that we need to
guard, is the interior of P minus the k given polygons.

h1

h2

h3

Figure 4: Three orthogonally convex polygons in the
plane. The green marks are corner guards.

Similar to our algorithm for the city guarding in pre-
vious section we extend the sides of the polygons to
partition the free space into convex region and then use
one camera for each region. Let h1, h2, . . . , hk denote
the polygons in an arbitrary order. For each hi in this
order, we extend the sides of hi in counterclockwise di-
rection and stop as soon as reaching another polygon,
an extension of a previous side, or the boundary of P .
We only extend the sides whose extensions do not inter-
sect the interior of hi; see Figure 4. Thus we extend one
side for every convex corner of a polygon. These exten-
sions partition the free space into some regions that we
denoted R1, R2, . . . .
By an argument similar to that of Lemma 2 we can

show that each Ri is convex.
By an argument similar to that of Lemma 3 we can

show that the number of regions Ri is
m
2 + k + 1. We

define a 3-regular plane graph G = (V,E) as before.
Among all corners, we only introduce vertices for convex
ones. By a simple counting argument one can show
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that the total number of convex corners is c = m
2 + 2k;

see also [6]. Thus the number of vertices of G is 2c,
one vertex for each convex corner and one vertex for its
extension. Thus |V | = 2c = m + 4k. Since the graph
is 3-regular, the total degree is 3|V | = 3m+ 12k, which
is equal to 2|E|. Hence |E| = 3m

2 + 6k. Thus, for the
number of faces we get

|F | =
(
3m

2
+ 6k

)
− (m+ 4k) + 2 =

m

2
+ 2k + 2.

Excluding the outerface and the k holes, the number of
regions Ri is

m
2 +k+1. Similar to Lemma 4 we can show

that each Ri has a corner on its boundary. We classify
the regions by good and bad and then place cameras
on the corners (one camera for each Ri) similar to our
placement in the previous section. This would guard
the free space with m

2 + k + 1 cameras. The following
theorem summarizes our result in this section.

Theorem 6 Given k pairwise disjoint arbitrary-
oriented orthogonally convex polygons of total m ver-
tices in the plane, we can guard the entire free space
with at most m

2 + k + 1 cameras of 180◦ field of view
that are placed at the corners of the polygons orthogonal
to a side. The bound m

2 + k + 1 is the best achievable.

Remark. It is easily seen that the algorithm of this
section can be generalized to guard cities with buildings
that have orthogonally convex bases. In fact, the npcity
guarding in the previous section is a special case of this
problem where m = 4k.

References

[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann
Miltzow. The art gallery problem is ∃R-complete. In
Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 65–73, 2018.

[2] Lichen Bao, Sergey Bereg, Ovidiu Daescu, Simeon
Ntafos, and Junqiang Zhou. On some city guarding
problems. In International Computing and Combina-
torics Conference, pages 600–610. Springer, 2008.

[3] Gregoria Blanco, Hazel Everett, Jesus Garcia Lopez,
and Godfried Toussaint. Illuminating the free space
between quadrilaterals with point light sources. In Pro-
ceedings of Computer Graphics International, World
Scientific, 1994.
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